MARKING KEY

PHYSICS SECTION ONE: SHORT ANSWER

Question 1(a)

Heat vs. temperature

Description	Mark
Heat is thermal or internal energy being transferred because of a difference in temperature.	1
Temperature is the average kinetic energy of the molecules that a substance is made of.	1

Question 1(b) Effects of heat

Mark
1
1
1

Question 2 Kinetic energy

	Description	Mark
E_p on roof = E_k at ground		1
E _p = mg∆h		1
$= (2 \text{ kg})(9.8 \text{ m s}^{-2})(4.5 \text{ m})$		
$E_{k} = 88.2 \text{ J}.$		1

Question 3

Galaxy distance

Description	Mark
$v = \frac{s}{t}$	1
$s = v.t = (3 \times 10^8)(3600 \times 24 \times 365) = 9.46 \times 10^{15} m$.	1

Question 4

Description	Ma	ark
All will be the correct brightness.	1	1
If one fails, the others keep working.	1	1

Question 5 Series resistors

Description	Mark
	1

Question 6 Nuclear equation

	Description	Marks
$^{10}_{5}\text{B} + ^{1}_{0}\text{n} \rightarrow$	$\frac{4}{2}\alpha + \frac{11}{3}Li$	1

Question 7

Resistance calculation	
Description	Mark
$\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$	1
$\frac{1}{R_{\rm T}} = \frac{1}{5} + \frac{1}{2} = \frac{7}{10}$	1
$R_{T} = \frac{10}{7} \Omega = 1.43 \Omega .$	1

Question 8 Half-life

	Description	Mark
n° of half lives = $\frac{age of Earth}{half life}$.		1
$\frac{5 \times 10^9}{7 \times 10^8}$ = about 7 half lives.		1

Question 9 Geiger counter

Description	Mark
Radiation spreads out from the source.	1
Beta radiation is absorbed (attenuated) by air.	1

Question 10(a) Total energy radiated

Total ellergy radiated	
Description	Mark
Energy radiated remains constant over one year	1
$E = 10^{-9} \times 3600 \times 24 \times 365 = 0.0315 J .$	I

Question 10(b) Absorbed dose

Description	Mark
absorbed dose = $\frac{\text{energy absorbed}}{\text{body mass}}$.	1
absorbed dose = $\frac{0.031536 \text{ J}}{75 \text{ kg}}$ = 4.20 x 10 ⁻⁴ J kg ⁻¹	1

Question 11(a) Volt definition

Description	Mark
Volt.	1
The potential difference between two points is one volt if one joule of energy is needed to move one coulomb of charge from one point to the other.	1

Question 11(b) Emf calculation

Description	Mark
$emf = \frac{energy}{charge}$	1
$emf = \frac{15 \text{ J}}{2.5 \text{ C}} = 6.00 \text{ volt}$.	1

Question 12(a) Reflective insulation

Description	Mark
Silver surfaces reflect emr well.	1
This would insulate against radiant heat such as infrared.	1

Question 12(b) Batt-type insulation

Description	Mark
Glass is a poor thermal conductor	1
The trapped air is also a poor thermal conductor	1

Question 13(a) Melting ice

Description	Mark
Must convert mass into kilograms m=0.360 kg	1
Q = mL	1
$Q = (0.36)(3.34 \times 10^5) = 1.20 \times 10^5 J$	1

Question 13(b) Energy transfer

	Description	Mark
INTO		1

Question 14 Hypothesis test

Description	Mark
B: Weighing the toast before and after it was on the plate.	1

Question 15 Water heaters

Description	Mark
Heat spreads through water by convection	1
Convection works best when the heat source is at the base of the convection cell.	1

Energy added	
Description	Mark
Shape of graph	1
Melting section smaller than boiling section	1
Caption: Ice melts (or equivalent)	1
Caption: Water heats up (or equivalent)	1
Caption: Water boils (or equivalent)	1

Question 17 Properties of radiation

rioportioo orradiation			
	ALPHA	ВЕТА	GAMMA
Formula	$\frac{4}{2}\alpha$	⁰ ₋₁ β	ο γ
Ability to ionise matter	High	Moderate	Low
Ability to penetrate matter	Low	Moderate	High

Description	Mark
Formula of beta is $^{0}_{-1}\beta$	1
Ionising ability of gamma is low	1
Penetrating ability of beta is moderate	1
Penetrating ability of gamma is high	1

Question 18 Write and balance a nuclear equation ${}^{238}_{92}U + {}^{1}_{0}n \rightarrow {}^{239}_{94}Pu + 2{}^{0}_{-1}\beta$

Description	Mark
Neutron included on left	1
Betas shown as products on right	1

Question 19 Density of water

Description	Mark
С: 277 К	1

SECTION TWO: PROBLEM-SOLVING

Question 20(a) Maximum height

Description	Mark
At max height, v = 0	1
If direction of u (upwards) is positive, then g (downwards) is negative.	1
$v^2 = u^2 + 2gs$	1
$s = \frac{v^2 - u^2}{2g} = \frac{0 - 10.24}{2(-9.8)} = \frac{10.24}{19.6} = 0.522 \text{m}$ above Geraldine's hand.	1

Question 20(b) Final velocity

Description	n	Mark
$v^2 = u^2 + 2gs$		1
Since s = 0, $v^2 = u^2$ Thus, final velocity = 3.20 m s	s⁻¹ downwards.	1

Question 20(c) Momentum explained

Description	Mark
Momentum is the product of an object's mass and its velocity.	1

Question 20(d) Momentum calculation

Descriptio	n Mark
p = mv .	1
$p = (2.2 \text{ kg})(3.2 \text{ m s}^{-1})$	1
Momentum = 7.04 kg m s ⁻¹ .	1
Direction is upwards.	1

Question 21(a) Power output

Description	Mark
P = VI	1
P = (250)(4.2) = 1050W	1

Question 21(b) Energy transferred

Description	Mark
Must convert time taken = 10 minutes = 600 seconds	1
$P = \frac{\Delta E}{t}$	1
$\Delta E = Pt$	1
$E = (1050)(600) = 6.30 \times 10^5 $ J	1

Question 21(c) Temperature rise

Description	Mark
$Q = mc\Delta T$	1
$\Delta T = \frac{Q}{mc}$	1
$\Delta T = \frac{6.3 \times 10^5}{(2)(4180)} = 75.4^{\circ}C$	1

Question 22(a) Velocity from graph

Description	Mark
12 m s ⁻¹ .	1

Question 22(b) Acceleration from graph

Acceleration non graph		
	Description	Mark
gradient = $\frac{rise}{run}$		1
gradient = $\frac{10 - 0}{3 - 0} = 3.3$		1
Acceleration is 3.3 m s^{-2} .		1

Question 22(c) Displacement from graph

Description	Mar
	k
displacement from 0 to 4s = area of triangle = $\frac{1}{2}$ (base x height)	4
=(0.5)(4)(12) m = 24 m	
displacement from 4 to 10s = area of rectangle = (base x height)	4
=(4)(12) m = 48 m	
Total displacement = displacement (0 to 4s) + displacement (4 to 8s)	1
Total displacement = $24 \text{ m} + 48 \text{ m} = 72 \text{ m}$.	

Question 22(d) Direction of travel

	Description	Mark
No.		1

Question 23(a) Bequerel

Description	Mark
1.03 x 10 ¹⁵ Bq	1

Description	Mark
Difference between the mass of a nucleus and the masses of its components.	1

Question 23(b)(ii) **Binding energy**

Description	Mark
Energy released when the components of a nucleus come together; OR energy needed	1
to break up a nucleus into its components.	

Question 23(b)(iii)

Relationship between mass defect and binding energy

Description	Mark
Binding energy is the potential energy decrease when the parts of a nucleus come together.	1
Energy and mass are equivalent through the relationship $\Delta E = (\Delta m)c^2$.	1
Mass therefore decreases when the potential energy of a nucleus decreases.	1

Question 23(c) Decay releases energy

Mark
1
1
1
1

Question 24(a) Weight of lift

Description	Mark
$F_w = mg$	1
weight = $(2000 \text{ kg})(9.8 \text{ m s}^{-2}) = 19.6 \text{ kN}$.	1

Question 24(b)

Tension when moving at constant speed

	Description	Mark
19.6 kN.		1
	/	

Question 24(c)

Free body diagram—moving

Description	Mark
Upward force.	1
Downward force.	1
Same size (19.6 kN).	1

Question 25(a) Resistance of hot lamp

Description	Mark
$P = \frac{V^2}{R}$	1
$R = \frac{V^2}{P} = \frac{240^2}{60}$	1
R = 960 Ω.	1

Question 25(b) Resistance of cold lamp

	Description	Mark
$R_{cold} = \frac{R_{hot}}{10} = \frac{(answer from 10)}{10}$	$\frac{m21a)}{2}=96\Omega.$	1

Question 25(c)

Ohmic vs non-ohmic conductors	
Description	Mark
Resistance is constant in ohmic conductors.	1
Resistance changes with current (or temperature) in non-ohmic conductors.	1

Question 25(d)

Lamps

	Description	Mark
No.		1

Question 25(e) Measuring resistance

Description	Mark
	1
Turn on and allow the lamp to heat up.	1
Measure V and I.	1
Use Ohm's law to calculate resistance.	1

Question 26(a) Variables

Description	Mark
They measured: thinking time OR braking distance.	1
They controlled: [any two of] type of vehicle, daylight, condition of road, stimulus.	2

Question 26(b) Experimental design

Description	Mark
This would reduce the uncertainty in their measurements.	1
By averaging out human errors by any one driver.	1

Question 26(c) Error reduction

Description	Mark
Having trials for each driver at each speed reduces possible errors/uncertainties.	1
By allowing for people applying the brakes differently at different speeds (and so biasing	1
the data).	

Question 26(d)(i)

Question 26(d)(ii) Thinking distance and initial speed

Description	Mark
Thinking distance increases regularly as the initial speed increases.	1

Question 26(d)(iii) Thinking distance from graph

Question 26(e) Conclusion

Description	Mark
The distance required to stop increases as the initial speed increases.	1
The stopping distance increases faster than the initial speed increases.	1
There would probably be fewer accidents if people drove more slowly.	1

Physics Stage 2 exam

	2A				2B			
	Working in	Motion and	Nuclear		Working in	Heating and	Electrical	
	physics	forces	physics		physics	cooling	fundamental	
						Ū	S	
SECT								
Α								
1						X		
2		X						
3		X						
4							X	
5							X	
6			X					
7							X	
8			X					
9			X					
10			X					
11							X	
12						X		
13						X		
14			4		X	X		
15						X		
16					X	X		
17			X					
18			X					
19	X							
SECT								
В								
20		X						
21					*	X		
22	X	X						
23			X	X				
24		X		X				
25				X			X	
SECT								
С								
26	X	X						
			-					